20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

Designer's ${ }^{\top M}$ Data Sheet SWITCHMODE Series NPN Silicon Power Darlington Transistors with Base-Emitter Speedup Diode

The MJ10022 and MJ10023 Darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications such as:

- AC and DC Motor Controls
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Fast Turn-Off Times

150 ns Inductive Fall Time @ $25^{\circ} \mathrm{C}$ (Typ) 300 ns Inductive Storage Time @ $25^{\circ} \mathrm{C}$ (Typ)

- Operating Temperature Range -65 to $+200^{\circ} \mathrm{C}$
- $100^{\circ} \mathrm{C}$ Performance Specified for:

TELEPHONE: (973) 376-2922
(212) 227-6005

FAX: (973) 376-8960

MJ10022

MJ10023

(TO-3)

Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\text {日JC }}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

[^0]NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. N.I Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

MJ10022 MJ10023

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage (Table 1) $\left(I_{C}=100 \mathrm{~mA}, I_{B}=0\right)$	MJ10022 MJ10023	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 350 \\ & 400 \end{aligned}$	-	-	Vdc
```Collector Cutoff Current \(\left(V_{C E V}=\right.\) Rated Value, \(\left.V_{B E(o f f)}=1.5 \mathrm{Vdc}\right)\) \(\left(V_{C E V}=\right.\) Rated Value, \(V_{B E}\) (off) \(=1.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\) )```		ICEV	-	-	$\begin{gathered} 0.25 \\ 5.0 \end{gathered}$	mAdc
Collector Cutoff Current $\left(V_{C E}=\text { Rated } V_{C E V}, R_{B E}=50 \Omega, T_{C}=100^{\circ} \mathrm{C}\right)$		ICER	-	-	5.0	mAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{~V}, \mathrm{IC}=0\right)$		${ }^{\text {I EBO }}$	-	-	175	mAdc

## SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased	IS/b		See Figure 13	
Clamped Inductive SOA with Base Reverse Biased	RBSOA		See Figure 14	

ON CHARACTERISTICS (1)

DC Current Gain $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	hFE	50	-	600	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(I_{C}=20 \mathrm{Adc}, I_{B}=1.0 \mathrm{Adc}\right) \\ & \left(I_{C}=40 \mathrm{Adc}, I_{B}=5.0 \mathrm{Adc}\right) \\ & \left(I_{C}=20 \mathrm{Adc}, I_{B}=10 \mathrm{Adc}, T_{C}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{\text {CE }}$ (sat)	- -	-	$\begin{aligned} & 2.2 \\ & 5.0 \\ & 2.5 \end{aligned}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \quad\left(I_{C}=20 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}\right) \\ & \left(I_{\mathrm{C}}=20 \mathrm{Adc}, I_{\mathrm{B}}=1.2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE}}$ (sat)			2.5 2.5	Vdc
Diode Forward Voltage $(\mathrm{IF}=20 \mathrm{Adc})$	$\mathrm{V}_{\mathrm{f}}$	-	2.5	5.0	Vdc

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{VCB}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}_{\text {test }}=1.0 \mathrm{kHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	150	-	600	pF

SWITCHING CHARACTERISTICS

Resistive Load						
Delay Time	$\begin{gathered} \mathrm{V} \mathrm{CC}=250 \mathrm{Vdc}, \mathrm{ICC}_{\mathrm{IC}}=20 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{Adc}, \\ \mathrm{~V}_{\mathrm{BE}(\text { off })}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{p}}=50 \mu \mathrm{~s}, \\ \text { Duty Cycle } \leq 2.0 \%) \end{gathered}$	$\mathrm{t}_{\mathrm{d}}$	-	0.03	0.2	$\mu \mathrm{s}$
Rise Time		$t_{r}$	-	0.4	1.2	$\mu \mathrm{s}$
Storage Time		$t_{s}$	-	0.9	2.5	$\mu \mathrm{s}$
Fall Time		$t_{f}$	-	0.3	0.9	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1)						
Storage Time	$\begin{gathered} \left(I_{C M}=20 \mathrm{~A}, V_{C E M}=250 \mathrm{~V}, I_{B 1}=1.0 \mathrm{~A},\right. \\ \left.V_{B E(\text { off })}=5 \mathrm{~V}, T_{C}=100^{\circ} \mathrm{C}\right) \end{gathered}$	$\mathrm{t}_{\mathrm{sv}}$	-	1.9	4.4	$\mu \mathrm{s}$
Crossover Time		$\mathrm{t}_{\mathrm{c}}$	-	0.6	2.0	$\mu \mathrm{s}$
Fall Time		$t_{\text {fi }}$	-	0.3	-	$\mu \mathrm{s}$
Storage Time	$\begin{gathered} \left(\mathrm{ICM}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{CEM}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{~A},\right. \\ \left.\mathrm{V}_{\mathrm{BE}(\mathrm{off})}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{gathered}$	$\mathrm{t}_{\text {sv }}$	-	1.0	-	$\mu \mathrm{s}$
Crossover Time		$\mathrm{t}_{\mathrm{c}}$	-	0.3	-	$\mu \mathrm{s}$
Fall Time		$\mathrm{t}_{\mathrm{fi}}$	-	0.15	-	$\mu \mathrm{s}$

[^1]
[^0]:    (1) Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.

[^1]:    (1) Puise Test: PW $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

